DOCUMENT RESUME

ED 422 923 IR 057 081
AUTHOR Wilson, E. Vance; Connolly, James R.

TITLE Key Procedures in User Interface Development.

PUB DATE 1997-00-00

NOTE 9p.; In: Proceedings of the International Academy for

Information Management Annual Conference (12th, Atlanta, Ga,
December 12-14, 1997); see IR 057 067.

PUB TYPE Reports - Descriptive (141) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Interfaces; *Computer Software Development;

*Computer System Design; Information Science Education;

*Information Systems; Interaction; *Man Machine Systems;

Research and Development; User Needs (Information)
IDENTIFIERS Graphical User Interfaces

ABSTRACT

Information systems (IS) professionals are called on to
produce increasingly sophisticated user interfaces as a part of software
development. Although IS education includes coverage of user interface (UI)
development, classroom presentation of this topic frequently is cursory and
does not provide any particular methodology for the task. In this paper, a
set of procedures is presented for teaching UI development with a "how to"
approach, based on research and practice in the field of Human Computer
Interaction (HCI). Initial application in the classroom suggests this
approach is useful for focusing students' conceptual understanding of the
topic without increasing required classroom time or resources when compared
to traditional methods. Three tables present: key procedures in UI
development, examples of UI constraints, and results of user testing in an
Apple II online tutorial.. (Contains 16 references.) (Author/AEF)

& de de ke e de de de e de de de K de de de oK e de e de de de de e de de e de ke de e de e e e e de e de de de e de e e ode e de ke de de de de e de de e de de e de de ke e de dede de de e dede ke dede ke ke ke ok

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
dhhkdhhhhhhhddhddhdhhhdhhhhhhhhhhhhhdhhhhdhdhhhhish

ERIC

Aruitoxt provided by Eic:

KEY PROCEDURES IN USER INTERFACE DEVELOPMENT

Q E. Vance Wilson
: of}a’c'?af’e%ﬁé‘aﬂm%’ﬂegfn§%“.23To§§% . University of Wisconsin-Eau Claire “PERMISSION TO REPRODUCE THIS
Q EDUCATIONAL giigg?ggz)"‘mﬂ MATERIAL HAS BEEN GRANTED BY
QO e P aaenaaton T. Case
originating it James R. Connolly
O Minor changes have been made to
improve reproduction guality. California State University, Chico
© Paints of view of Dl e rsent TO THE EDUCATIONAL RESOURCES
S OER! position or policy. INFORMATION CENTER (ERIC).”
Information systems (IS) professionals are called on to produce increasingly sophisticated user interfaces
as a part of software development. Although IS education includes coverage of user interface (UI)
development, classroom presentation of this topic frequently is cursory and does not provide any particular
methodology for the task. In this paper, we present a set of procedures for teaching UI development with a
"how to” approach, based on research and practice in the field of Human Computer Interaction (HCI).
Initial application in the classroom suggests this approach is useful for focusing students' conceptual
understanding of the topic without increasing required classroom time or resources when compared to
traditional methods.
INTRODUCTION user interfaces. (GUIs), multimedia computing,
: and even virtual reality. From their texts, IS
The onrush of new user interface technologies students may learn what a dialog box is and
and a lack of HCI specialists in the field of IS receive isolated tips such as "use command verbs
have combined to make UI development a clearly" and "don't display blue text on a red
common activity for mainstream IS professionals. background." What students do not learn is a
However, students in IS academic programs are specific method for Ul development that they can
not well prepared for this responsibility as they use in their subsequent careers in the manner
frequently receive only a cursory introduction to that they are able to apply, for example, data flow
the topic. This is due primarily to two factors. diagramming or flowcharting techniques.
First, the treatment of Ul development and other _
aspects of HCI is spread thinly across the Skills in Ul development will continue to be
curriculum. The IS ‘95 curriculum proposal [7] important for mainstream IS students. Since HCI
suggests that in-depth study of the topic should specialists are relatively rare in the IS profession
be presented in both the programming language and Uls are a major part of current practice in
and the physical design curricula. However, Ul event-driven programming, it is foreseeable that
development is not the central focus in either of today's IS students will be responsible for
these courses, and the small amount of classroom developing Uls during their careers. Thus, there
time that can be devoted to the topic in either is a compelling need to overcome the limitations
course implicitly limits the depth of student of course time constraints and shallow texts in
learning. teaching this topic.
Second, course textbooks avoid the issue of how to This paper presents a set of procedures for Ul
develop a Ul Instead, texts tend to broadly development that we have found to be useful both
survey Ul categories and their characteristics, in stand-alone training and as augmentation for
- .touching on such diverse topics as command line textbook treatments of the topic. In the following
0o instructions for mainframe computers, graphical sections, we discuss the background leading to

I@osﬁo

Proceedings of the 12 Annual Conference of the International Academy for Information Management 115

the research, describe the procedures, and
highlight ways they can be applied in practice.

BACKGROUND

IS programs that offer specialization in HCI
require one or more courses in User Interface
Design, supported by study in Cognitive Science,
Human Factors of Information Systems, and
additional electives in HCI [1]. We do not propose
that it is desirable, or even possible, to add this
volume of coursework to the mainstream IS
currictlum. Instead, our approach focuses on
isolating and presenting the procedures that HCI
user- and task-centered research has found to be
key to pedagogy and practice. Our objective is to
enhance the instruction of UI development within
systems analysis and design or advanced
programming courses without the need to alter
existing course schedules.

Our criteria are, first, that the procedures must
be sufficiently basic that students can quickly
grasp the major concepts. Although basic
instruction inherently lacks depth, our intention
is to provide a framework to which students can
add the experiential learning they presumably
will gain during their careers. Second, the
procedures must prescribe specific activities or
ranges of activities to be performed in a
systematic fashion. Third, the procedures should
avoid assumption of particular technologies or
other contingencies. Finally, it must be possible
to present the material effectively during a single
class period of 50 to 80 minutes length.

The result of our research is the list of six
procedures profiled in Table 1. The procedures
may be combined to portray a skeletal method of
Ul development that is adaptable to a wide range
of programming environments and Ul formats. In
the following sections we describe the individual
procedures and suggest ways of integrating them
into standard systems analysis and design
procedures.

Determine Factors That Constrain the Ul

Determine the factors that are most
important in constraining the form and
function of the UI; these are the UI
constraints. We propose three categories of
factors to be central to the success of Ul
development within the organizational contexts

116

that are typical of IS practice. These relate to:

¢ the users of the UI-who will use it?

¢ the tasks that will be performed with the
UI-what will it be used for?

¢ the environments in which the UI will
operate-where and how will it be used?

The determination must be sufficiently detailed
to avoid abstractions that may otherwise mask
Ul problems. For example, focusing on the
average age in a department of data entry
workers would likely mask the fact that a sizable
portion of the workers are over 45 years old, and
that these specific workers have great difficulty
reading small font sizes on a computer monitor.
The determination must be adequately
documented so that standards to which the Ul is
designed and tested are unambiguous. At the
same time, the documentation process should be
streamlined so that UI developers can use it as an
interesting and helpful means to understand
system constraints and focus their subsequent
development efforts, rather than just another
form of tedious paperwork.

Determine Users. Early computer interfaces
were difficult for most people to use, limiting the
situations where the systems could be deployed.
Researchers in HCI developed user-centered
design as a way to improve system performance
through understanding the important
characteristics of system users. Norman writes,
"As we expand the base of the [computer] user
population, we must attend more and more to the
needs and abilities of a variety of users" [11 p.
11]. Initially, user characteristics were studied
with the idea of configuring system features for
each particular user need or style. However,
research indicates that it is more practical to
build systems that are sufficiently flexible to
accommodate the anticipated range of use than to
try to match the system to each individual special
characteristics (for discussion of this issue, see
Huber, 1983).

Users should be specified by name and job
description, and a set of pertinent user
characteristics should be developed from these
specifications (see Table 2). Knowing who will use
the system and what they do is helpful in
deciding which characteristics are pertinent to

Proceedings of the 12" Annual Conference of the International Academy for Information Management

TABLE 1

KEY PROCEDURES IN USER INTERFACE DEVELOPMENT

Procedure Stage in Process Description
Determine factors that Early Determine and list the most important factors relating to the users
constrain the Ul of the Ul, the tasks that will be performed with it, and the environments
where it will operate
Leverage users' skills Early Review fisting of users' skills to identify those that will be most important
to leveraging the usability of the Ul
Adopt operating system Early Use the OS manufacturer's guidelines as the primary standard for
standards Ul development
Visualize prior to Middle Visualize the finished design in two separate stages using cocktail napkin
coding the product and mock-up techniques
Observe prior to Middle to late Perform user testing of mock-ups and working project components using
releasing the product a simple think-aloud technique '
Conduct planned iteration ~ Throughout Plan ahead and budget for iterative development, especially for cycling
among the procedures between the visualize and observe procedures
TABLE 2
EXAMPLE LISTING OF UI CONSTRAINTS
User Task Environment
Demographic factors Simple task (in spreadsheet) Technology
Age Enter formula to sum range A4:B7 Computers: Mix of Intel 386, 486,
Gender Copy cell A5 to cell D8 and Pentium PCs
Height Complex task O/S: MSDOS ver. 5.0
Able to telecommute? Create histogram bar chart of range A1:A28 Other environments
Salaried or hourly? Make formula and cell Management structure
entries to calculate varying rates, periods, Physicat facilities
and loan amounts Market competition
Industry practices
Skills Legal and regulatory
Computer spreadsheet Socio-cuttural

programming skill
English language
fluency
Data entry speed

Personal
Learning style
Cognitive complexity
Visual acquity
Color vision

Scenario

John is creating a check register in Excel.
He is a proficient Lotus 1-2-3 user but has
never used Excel. He can create the register
by performing tasks A, B, and C.

Proceedings of the 12" Annual Conference of the International Academy for Information Management

117

4

the Ul and is key to understanding the range that
can be expected for each characteristic. Once the
user-related Ul constraints are decided upon and
documented in a simple listing, information
about them can be collected as a part of user
requirements elicitation accompanying systems
analysis. However, if it is not possible to contact
all system users, it is important to find users who
are representative of the identified target group,
especially in their technology skills and interests.

Determine Tasks. HCI research also suggests
that task has important consequences for UI
development. Lewis and Rieman present a task-
centered design method that "focuses on real,
complete, representative tasks ... [vs.] abstract,
partial task elements" [6, chap. 2]. In task-
centered design, Ul developers interview
representative users to develop task
specifications in the following steps:

1. collect actual tasks that the UI will be used to
accomplish, ranging from simple to complex
in action;

2. ask what the user wants to do, not how to do
it, thus avoiding the tendency to define the
task too narrowly within preconceived
technical constraints;

3. develop scenarios that encompass individual
tasks as well as interactions among tasks;
and

4. use task scenarios to highlight what UI
features will be necessary to accomplish the
tasks and to infer how these features will be
applied in practice.

The described task-centered approach should be
used for UI constraint determination as far as is
practical. However, there rarely will be time in
practice to both develop and fully document large
numbers of sample tasks and scenarios. Thus, we
suggest that developers focus their efforts on
collecting a representative variety of tasks and
scenarios and limit the documentation of these to
simple descriptions of the type shown in Table 2.
Task-related Ul constraints should be collected
during user requirements elicitation.

Determine Environments. User- and task-
centered design are valuable aids to UI
development in IS projects, but additional factors
are important for systems that are to be used in

organizational contexts, as is typical in IS. We
call these general factors environments in
recognition that they surround the user and task.
Some environments that are potential UI
constraints are management structure,
technology, and industry practices (see Table 2).
Although a given project is likely to have many
related environmental factors, it is incumbent on
the developer during the determination process to
focus on only those that place important
constraints on the Ul. In many cases these
environments will become evident during
requirements analysis. However, important
factors frequently surface as additional users,
managers, and other stakeholders become
acquainted with the system. Thus, UI developers
should be open to the possibility of emergent
environmental determinants and be prepared to
evaluate and document these as they arise.

Leverage Users' Skills

Apply users' existing skills to leverage the
usability of the UI. Regardless of background,
users bring. a great number of skills to their
interaction with a system. Leveraging applies
users' existing skills to minimize difficulties in
dealing with the new situation. For example, it
will be easier initially for users to fill out an on-
line replacement for a paper form if it has the
same layout and requires the same entries as the
form they have been using. Baecker and Buxton
[2, p. 212] recommend four procedures to aid
leveraging:

¢+ build upon the users' existing set of skills;

* keep the set of skills required by the system to
a minimum;

+ use the same skill wherever possible in similar
circumstances; and

¢+ use feedback to effectively reinforce similar
contexts and distinguish ones that are
dissimilar.

In leveraging, it is useful to consider user skills
from two distinct viewpoints. First, group norms
are important for directing the baseline Ul
features; these can be thought of as the central
target of the system's flexibility to accommodate
users' needs and special skills. Second,
consideration of individual users or subgroups

‘who vary from the norm in one way or another

118 Proceedings of the 12" Annual Conference of the International Academy for Information Management

9

(e.g., novices or "power users") will provide a
gauge to the amount and type of flexibility that
should be incorporated into the UI (e.g., whether
to incorporate "balloon help"). The list of user-
related constraints that is developed during
specification should inform the leveraging
process. The skills in this list that are most
important to leveraging should be identified, and
the constraints list should be updated to include
any additional user skills that emerge during this
review.

Adopt Operating System Standards

Adopt operating system standards for Ul
design. In Ul development, it is imperative that
developers make a concerted effort to fail to
invent new Ul designs and interaction methods.
This is important to productivity both for
developers, who must take time away from other
activities to invent and implement the new
feature, and for users, who must learn how to use
the feature. Brown states, "Consistency is one of
the most obvious human-computer interface
design goals, but one that requires perhaps the
most discipline in the design process" [4, p. 9.
There is always some tendency for Ul developers
to experiment unproductively unless their
designs are anchored in documented standards.
We propose that system-level Ul guides, e.g., [8],
provide the best standards for programmers who
_are not HCI specialists, and we recommend that
UI developers obtain and review the appropriate
guide prior to beginning design work. System-
level Ul guides enhance programming
productivity by presenting current standards,
being specific to the intended computing
environment, and providing relevant coding
examples and guidelines. Our advice is not
intended to discourage interest in general books
on Ul design (e.g., [4, 13, 14]), however,
generalized information is not an adequate
substitute for system-level documentation.

Visualize Prior to Coding the Product

Use two types of visualization techniques to
explore Ul designs. We recommend using two
distinct visualization techniques to quickly create
and refine UI designs. Cocktail napkin
visualization is performed early in the design
stage, with the developer producing small, rough
drawings with little attention paid to clarity or
‘detail. These are drawn rapidly one after the

other, typically in a private setting, until the
developer is satisfied with the emergent design.
Cocktail napkin visualization has several
important characteristics:

¢ Drawing overcomes a natural tendency to
overrely on mental models by moving the
design into a visible medium. Norman [10]
points out that mental models are frequently
incomplete, they are unstable, and it is hard
for people to visualize dynamic actions in
their mental models. Drawing exposes
problems to view.

¢+ Fast production of the drawing on a small
scale serves to minimize the developer's
investment in the particular version and the
tendency to commit to it. Thus, fast
production avoids freezing the design
prematurely.

¢ The act of producing designs in private
promotes creativity by relieving the developer
of concerns about external review or
criticism. Although cocktail napkin
visualization can be conducted in groups,
many people are embarrassed about their
drawing skills and will spend excessive
amounts of time trying to complete a single
design as perfectly as possible.

When the developer is satisfied with the cocktail
napkin design, the final version should be
carefully annotated with any supporting
information that might be forgotten with the
passage of time, e.g., titles of command buttons,
dynamic actions on screen, and description of
graphics. The annotated designs may then be
shared with, and reviewed by, other members of
the development team.

Mock-up visualization is the detailed portrayal of
the actual system or parts of the system.
Depending on the tools at the developer's
disposal, this may be created either off-line or on-
line. Off-line mock-ups typically are created
entirely on paper, with commands, buttons,
graphics, etc. shown in position. Each Ul screen
is represented by one sheet of paper for a static
display, or more sheets if the screen displays
dynamic information or animation. On-line mock-
ups are created using a development
environment suitable for rapid application
development (RAD), e.g., Visual Basic, Delphi,

Proceedings of the 12" Annual Conference of the International Academy for Information Management 119

HyperCard, or a prototyping tool. In either case,
development of the mock-ups should be
completed quickly, since it is quite likely that
subsequent observation will suggest important
changes to the design.

Where it is difficult to provide built-in
functionality in mock-ups, e.g., ability to print the
document shown on the screen, this can be
supported by Wizard of Oz techniques [14, p.
101]. These techniques, based on the faux wizard
in the story of the same name, are used to
augment mock-ups with a human intermediary
who acts out a part of the system by describing
what actions the system performs when the user
interacts with the interface.

In large systems, it may be impractical to
simultaneously mock-up the UI for the entire
system. For these cases, Nielsen [9] recommends
developing horizontal and vertical mock-ups
based on task-scenarios such as those specified in
the Ul constraints. Horizontal mock-ups show the
broad appearance of the application, e.g., menus,
dialogs, and windows. Vertical mock-ups are
designed to provide sufficient depth and detail of
a particular part of the system to show how it will
react in specific scenarios.

Observe Prior to Releasing the Product

Observe users of the UI with the mock-ups
you have created. Observation should be
planned with the goal of decreasing the overall
expense of the project. For user observation, we
recommend UI developers employ a think-aloud
technique that is simple to apply and analyze. In
this technique, the UI developer finds
representative users to "try out" the system
under development. Ideally, these would be
individuals who represent the intended user
group and whose actions are not biased by
experiences with a previous mock-up. The
following procedures for the think-aloud
technique are summarized from Lewis and

. Rieman [6]:

1. Place the user in position to access the system
and describe the task scenario he or she is to
work through. Description of task scenarios
should focus on what the user is expected to
accomplish, rather than how it should be
done.

120

2. Explain how to think aloud: "You should say
aloud what you are thinking about, concerning
the system, as you work. If you quit talking I'll
remind you to speak up. Go ahead and begin."
Make it clear that if users have trouble it 'is
the system's fault and not theirs.

3. As the user works, avoid volunteering
information to explain the system's operation,
as your purpose is to see how the user will
progress without a human guide. Either
explain in advance that help cannot be given
during testing or plan ways to avoid leading
the user when giving help. If the user quits
talking, give a prompt to "Tell me what you're
thinking."

4. Pay special attention to any areas where the
user is blocked (can't progress without help),
backtracks (retraces steps due to uncertainty
of how to proceed), misappropriates
(incorrectly uses commands or tools), or
accesses on-line help functions. Keep notes
primarily in writing, but also consider making
unobtrusive audio or video recordings with the
user's permission.

Observation sessions should not be lengthy, as -
both users and developers tire quickly when
concentrating on their roles. After each
observation session is completed, notes from the
session should be reviewed and summarized,
paying special attention to unexpected user
actions. The designer must bear in mind that the
intention is to test the interface, not to validate it.
Avoid the temptation during review to "gloss over"
or rationalize user problems. Incorporating early
cycles of observation can highlight unexpected
problems while it is still inexpensive to fix them.
In fact, the relative cost to fix errors discovered in
the early design phases has been reported to be
less than one-hundredth the cost of fixing the
same problems after the system is implemented
[3]. Plan to correct observed problems, where
possible, through redesigning the UI rather than
alternatives, such as changing the training
methods or simply expecting users to work around
problems on their own.

Conduct Planned Iteration Among Procedures
Plan ahead to iterate and work through Ul

development in a cyclical fashion. The idea of
purely sequential, or waterfall, development is not

Proceedings of the 12* Annual Conference of the International Academy for Information Management

'l

TABLE 3

USER TESTING IN AN APPLE II ON-LINE TUTORIAL (TOGNAZZINI, 1992)

User Test Screen Display Failure Rate Explanation for Failures

1 Color graphic is displayed Overall: 25% Users didn't know whether monitor was
Prompt: "Is the picture above black and white or the color was
in color?” turned off.

2 Color graphic of words GREEN, Color monitor 0% Users of green-screen monitors
BLUE, ORANGE, MAGENTA is B/W monitor: 0% saw a green colored graphic.
displayed with each word in the Green monitor: 100%
named color
Prompt: "Are the words above
in color?"

3 Same graphic as User Test 2 Color monitor: 0% Users of non-color monitors interpreted
Prompt; "Are the words above B/W monitor: 20% the graphic as two colors (black
in more than one color?" Green monitor: 100% and white or black and green)

4 Same graphic as User Test 2 Cotor monitor: 0% Users misread question as
Prompt: "Are the words above in B/W monitor: 20% "Are the words above ...
several different colors?" Green monitor: 25% several different colors?"

5 Same graphic as User Test 2 Overall: 0% No failures.
Prompt: "Do the words above :
appear in several different colors?"

appropriate for Uls [6]. Regardless of the amount Iteration should be anticipated in Ul

of planning that may go into requirements
specification, unexpected problems are typical in
Ul development. This is illustrated by the case of
Apple Ul developers who, in testing an on-line
tutorial, found that their anticipated trouble
spots were easily remedied, but a different,
unforeseen problem in configuring the software to
run with the users' monitors required a
surprising number of observation cycles to
remedy (see Table 3). The importance of planned
iteration to their project is apparent in this quote:

No matter how many engineers we had
crowded into a room to discuss what
areas users were or were not going to
have trouble, we would never have hit
upon this as the major problem in the
application. Had we not tested, we would
have had a disaster on our hands...My
experience with this and other
applications and systems have proven to
me beyond a shadow of a doubt that
testing can save time, rather than cost
time because I don't have to work on
things that aren't broken. [15, p. 89]

development, especially between the observation
and visualization stages where iterative cycles
can refine the system prior to complete
construction. Coupling a streamlined
documentation process, fast visualization, and
inexpensive observation with modern RAD
programming environments can take much of the
onus out of iteration and can significantly
improve final products.

Moving from a sequential to an iterative process
design can make it difficult to know when pre-
release development is completed. We suggest the
following guidelines to assess completion. First,
review documentation of UI constraints and
ensure that each has been addressed
satisfactorily. Second, review the UI design to
ensure that it conforms to the operating system
standards for UI. Finally, address problems
observed in testing a representative sample of
users. The number of users that are observed
should be weighed against the cost and difficulty
of correcting problems that are discovered after
the project is released.

- Proceedings of the 12" Annual Conference of the International Academy for Information Management 121

DISCUSSION

Our presentation in the present paper has several
limitations. First, the procedures have been tested
in the classroom in only a limited number of
occasions to date. Potentially, they will be refined
and improved through future testing. Second, the
presentation is informal and lacks statistical
rigor, particularly in the observe procedure, where
a substantial literature exists. However, the time
constraints under which UI development must be
covered in IS classes limits instructors to
discussing only a small subset of the tools and
techniques that are used regularly by HCI
specialists. Thus, our presentation is not intended
as a substitute for specialized training or to
replace sophisticated HCI practices in situations
where the highest level of UI development is a
critical success factor, e.g., commercial software
development. Finally, the importance of the
procedures we have described must be weighed
against external factors. For example, advice to
leverage users' skills may be subordinated by the
organizational goal of reengineering business
processes to improve efficiency.

We propose that these limitations are offset by
practical value provided to IS students who must
draw initially upon their classroom training
when called upon to develop Uls later in their
careers. Our presentation describes a well-
grounded set of procedures that can be applied to
UI development in a systematic process. As
students gain experience, it should not be
necessary for them to replace these procedures
with completely different methods. Since the
procedures implement key aspects of HCI
research and pedagogy, students with an interest
can build upon them with knowledge that they
gain through experience and further study.

REFERENCES

(11 ACM SIGCHI. ACM SIGCHI curricula for
human-computer interaction. New York: ACM,
1992.

(2] Baecker, R. M., & Buxton, W. A. S. Readings
in human-computer interaction: A
multidisciplinary approach. San Mateo, CA:
Morgan Kaufmann Publishers, 1987.

(3] Boehm, B. W. Software engineering
economics. Englewood Cliffs, NJ: Prentice-
Hall, 1981.

(4] Brown, C. M. Human-computer interface
design guidelines. Norwood, NJ: Ablex, 1988.

[5] Huber, G. P. "Cognitive style as a basis for IS
and DSS designs: Much ado about nothing?"
Management Science, 29 (5), 1983, 567-582.

[6] Lewis, C., & Rieman, J. Task-centered user
interface design. Electronic text available
through anonymous FTP to ftp.cs.
colorado.edu in /pubs/distrib/clewis/HCI-
Design-Book, 1993.

[7] Longenecker, H. E., Jr., Feinstein, D. L.,
Gorgone, J. T., Davis, G. B., & Couger, J. D,,
IS ‘95: Model curriculum and guidelines for
undergraduate degree programs in
information systems (draft report). School of
CIS, University of South Alabama, Mobile,
AL, 1995,

(8] Microsoft Corp., The Windows® interface
guidelines for software design. Redmond, WA:
Microsoft Press, 1995.

(9] Nielsen, J. "Usability engineering at a
discount." In Proceedings of the Third
International Conference on Human-
Computer Interaction, Boston, MA, 1989.

[10]Norman, D. A. "Some observations on mental
models." In Gentner, D., & Stevens, A. L.
(Eds.), Mental Models. Hillsdale, NJ:
Lawrence Erlbaum, 1983.

(11]Norman, D. A. "Cognitive engineering
principles in the design of human-computer
interfaces." In G. Salvendy (Ed.), Human-
Computer Interaction, pp. 11-16. New York:
Elsevier, 1984.

[12]Norman, D. A. "Cognitive engineering." In D.
A. Norman & S. W. Draper (Eds.), User
centered system design, pp. 31-61. Hillsdale,
NJ: Lawrence Erlbaum Associates, 1986.

(13]Shneiderman, B. Designing the user interface:
Strategies for effective human-computer
interaction. Reading, MA: Addison-Wesley,
1987.

(14 Thimbleby, H. User interface design. New
York: ACM Press, 1990.

[15]Tognazzini, B. Tog on interface. Reading, MA:
Addison-Wesley, 1992.

(16]Webster. Webster's new universal unabridged
dictionary. New York: Barnes & Noble, 1989.

122 Proceedings of the 12" Annual Conference of the International Academy for Information Management

9

U.S. DEPARTMENT OF EDUCATION

Offica of Educational Rassarch and Improvamant (OERI)
. Educatlonal Rasources Informatlon Canter (ERIC} l' :

NOTICE

REPRODUCTION BASIS

This document is covered by a signed “Reproduction Release
(Blanket)” form (on file within the ERIC system), encompassing all
or classes of documents from its source organization and, therefore,
does not require a “Specific Document” Release form.

This document is Federally-funded, or carries its own permission tv
reproduce, or is otherwise in the public domain and, therefore, may
be reproduced by ERIC without a signed Reproduction Release
form (either “Specific Document” or “Blanket”)..)

